Staphylococcus aureus is an important human and animal pathogen that harbors protein kinases. The proteins phosphorylated in this bacterium grown on glucose minimal medium have been in vivo labeled with[(32)P]-orthophosphate and analyzed by two-dimensional gel electrophoresis followed by MS. A total of 11 glycolytic phosphoproteins have been identified and verified.
View Article and Find Full Text PDFThe phosphorylation of proteins at tyrosine residues is known to play a key role in the control of numerous fundamental processes in animal systems. In contrast, the biological significance of protein-tyrosine phosphorylation in bacteria, which has only been recognised recently, is still unclear. Here, we have analysed the role in Escherichia coli cells of an autophosphorylating protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb, by performing knock-out experiments on the corresponding genes, wzc and wzb, and looking at the metabolic consequences induced.
View Article and Find Full Text PDFThe ptp gene of Acinetobacter johnsonii was previously reported to encode a low-molecular-mass protein, Ptp, whose amino acid sequence, predicted from the theoretical analysis of the nucleotide sequence of the gene, exhibits a high degree of similarity with those of different eukaryotic and prokaryotic phosphotyrosine-protein phophatases. We have now overexpressed the ptp gene in Escherichia coli cells, purified the Ptp protein to homogeneity by a single-step chromatographic procedure, and analysed its functional properties. We have shown that Ptp can catalyse the dephosphorylation of p-nitrophenyl phosphate and phosphotyrosine, but has no effect on phosphoserine or phosphothreonine.
View Article and Find Full Text PDFAutophosphorylation at tyrosine is a common process in eukaryotic kinases, which is generally modulated by regulatory ligands and affects the properties of these enzymes. We report that this type of modification occurs also in bacteria, namely in an 81 kDa protein from Acinetobacter johnsonii. This protein is phosphorylated at the expense of ATP exclusively at tyrosine residues.
View Article and Find Full Text PDF