Publications by authors named "M Ribecco-Lutkiewicz"

Background: Mitochondrial biogenesis occurs in response to chronic stresses as an adaptation to the increased energy demands and often renders cells more refractive to subsequent injuries which is referred to as preconditioning. This phenomenon is observed in several non-neuronal cell types, but it is not yet fully established in neurons, although it is fundamentally important for neuroprotection and could be exploited for therapeutic purposes.

Methods: This study was designed to examine whether the preconditioning treatment with hypoxia or nitric oxide could trigger biogenesis in undifferentiated and differentiated neuronal cells (rat PC12 and human NT2 cells) as well as in primary mouse cortical neurons.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (iPSC)-derived neurons are of interest for studying neurological disease mechanisms, developing potential therapies and deepening our understanding of the human nervous system. However, compared to an extensive history of practice with primary rodent neuron cultures, human iPSC-neurons still require more robust characterization of expression of neuronal receptors and ion channels and functional and predictive pharmacological responses. In this study, we differentiated human amniotic fluid-derived iPSCs into a mixed population of neurons (AF-iNs).

View Article and Find Full Text PDF

The development of translational and predictive models in vitro for assessing blood-brain barrier (BBB) delivery has become an important requirement in preclinical testing of CNS-targeting therapeutics. Here we describe a directed monolayer differentiation strategy to generate a population of brain endothelial-like cells (BECs) from human induced pluripotent stem cell (iPSC) with robust BBB properties. To generate BBB permeability assays, the BECs are seeded as a monolayer on a semipermeable Transwell insert placed inside a companion plate to generate a two-compartment Transwell model.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a flavivirus that is highly neurotropic causing congenital abnormalities and neurological damage to the central nervous systems (CNS). In this study, we used a human induced pluripotent stem cell (iPSC)-derived blood brain barrier (BBB) model to demonstrate that ZIKV can infect brain endothelial cells (i-BECs) without compromising the BBB barrier integrity or permeability. Although no disruption to the BBB was observed post-infection, ZIKV particles were released on the abluminal side of the BBB model and infected underlying iPSC-derived neural progenitor cells (i-NPs).

View Article and Find Full Text PDF

We have developed a renewable, scalable and transgene free human blood-brain barrier model, composed of brain endothelial cells (BECs), generated from human amniotic fluid derived induced pluripotent stem cells (AF-iPSC), which can also give rise to syngeneic neural cells of the neurovascular unit. These AF-iPSC-derived BECs (i-BEC) exhibited high transendothelial electrical resistance (up to 1500 Ω cm) inducible by astrocyte-derived molecular cues and retinoic acid treatment, polarized expression of functional efflux transporters and receptor mediated transcytosis triggered by antibodies against specific receptors. In vitro human BBB models enable pre-clinical screening of central nervous system (CNS)-targeting drugs and are of particular importance for assessing species-specific/selective transport mechanisms.

View Article and Find Full Text PDF