Publications by authors named "M Reverberi"

Kiwifruit Vine Decline Syndrome (KVDS) has become a major concern in Italy, impacting both plant health and production. This study aims to investigate how KVDS affects soil health indicators and the composition of soil microbial communities by comparing symptomatic and asymptomatic areas in two kiwifruit orchards located in Latium, Italy. Soil samples were collected during both spring and autumn to assess seasonal variations in soil physicochemical properties, enzyme activities, and microbial biomass.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on preserving the Etruscan Necropolis of Tarquinia, Italy, which has valuable painted tombs that are threatened by microbial growth.
  • Since 2016, researchers have been monitoring fungi in one of the tombs, known as the Tomba degli Scudi, to understand the cause of newly observed black spots on the artwork.
  • The findings reveal that the fungal strains discovered are commonly found in similar underground environments, highlighting the importance of ongoing monitoring for successful preservation efforts.
View Article and Find Full Text PDF

Due to the fast-changing global climate, conventional agricultural systems have to deal with more unpredictable and harsh environmental conditions leading to compromise food production. The application of phytonanotechnology can ensure safer and more sustainable crop production, allowing the target-specific delivery of bioactive molecules with great and partially explored positive effects for agriculture, such as an increase in crop production and plant pathogen reduction. In this study, the effect of free pterostilbene (PTB) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) loaded with pterostilbene was investigated on Solanum lycopersicum L.

View Article and Find Full Text PDF

The fungi Botryosphaeriaceae are involved in olive declines in both the world hemispheres and in all continents where this species is cultivated. In Salento (Apulia, Italy), the Botryosphaeriaceae and have been reported as the agents of a branch and twig dieback that overlaps with olive quick decline syndrome caused by subsp. .

View Article and Find Full Text PDF

subsp. ST53 (XFP), the causal agent of olive quick decline syndrome (OQDS), was thoroughly investigated after a 2013 outbreak in the Salento region of Southern Italy. Some trees from Ogliarola Salentina and Cellina di Nardò, susceptible cultivars in the Gallipoli area, the first XFP infection hotspot in Italy, have resprouted crowns and are starting to flower and yield fruits.

View Article and Find Full Text PDF