Helicobacter pylori resists gastric acidity by modulating the proton-gated urea channel UreI, allowing for pH(out)-dependent regulation of urea access to intrabacterial urease. We employed pH- and Ca(2+)-sensitive fluorescent dyes and confocal microscopy to determine the location, rate, and magnitude of pH changes in an H. pylori-AGS cell coculture model, comparing wild-type bacteria with nonpolar ureI-deletion strains (ureI-ve).
View Article and Find Full Text PDFureI encodes an inner membrane protein of Helicobacter pylori. The role of the bacterial inner membrane and UreI in acid protection and regulation of cytoplasmic urease activity in the gastric microorganism was studied. The irreversible inhibition of urease when the organism was exposed to a protonophore (3,3',4', 5-tetrachlorsalicylanide; TCS) at acidic pH showed that the inner membrane protected urease from acid.
View Article and Find Full Text PDFGastroenterology
September 1998
Background & Aims: The metabolic and urease responses of Helicobacter pylori to variations in gastric acidity are unknown. The aim of this study was to determine effects of changes of environmental pH on metabolism, urease activity, and survival of H. pylori in an unbuffered environment.
View Article and Find Full Text PDF