Regulation of the peripheral vascular resistance via modulating the vessel diameter has been considered as a main determinant of the arterial blood pressure. Phosphodiesterase enzymes (PDE1-11) hydrolyse cyclic nucleotides, which are key players controlling the vessel diameter and, thus, peripheral resistance. Here, we have tested and reported the effects of a novel selective PDE1 inhibitor (BTTQ) on the cardiovascular system.
View Article and Find Full Text PDFNo current treatment targets cardiac proteotoxicity or can reduce mortality of heart failure (HF) with preserved ejection fraction (HFpEF). Selective degradation of misfolded proteins by the ubiquitin-proteasome system (UPS) is vital to the cell. Proteasome impairment contributes to HF.
View Article and Find Full Text PDFObjectives: The objective of this study was to identify factors associated with stroke, myocardial infarction (MI), all-cause mortality, or a diagnosis of ischemic heart disease (IHD) or unstable angina (UA), among patients newly-diagnosed with type 2 diabetes (T2DM) with no recent history of cardiovascular (CV) events who rapidly achieve and maintain HbA ≤8.0%.
Methods: Data were obtained from the Clinical Practice Research Datalink (CPRD) from January 1990 to December 2012.
Aims: Clinical observations showed a correlation between accelerated atherosclerosis in diabetes and high plasmatic level of IL-18, a pro-inflammatory cytokine. IL-18 enhances the production of inflammatory cytokines and cellular adhesion molecules contributing to atherosclerotic plaque formation and instability. Previous studies indicated that protein kinase C (PKC)-β inhibition prevented macrophage-induced cytokine expression involved in diabetic (DM) atherosclerotic plaque development.
View Article and Find Full Text PDFBackground: Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of the kidney excretory function and is strongly associated with increased early and long-term patient morbidity and mortality. Early diagnosis of AKI is challenging; therefore we profiled plasma microRNA in an effort to identify potential diagnostic circulating markers of renal failure. The goal of the present study was to investigate the dynamic relationship of circulating and renal microRNA profiles within the first 24 hours after bilateral ischemia-reperfusion kidney injury in mice.
View Article and Find Full Text PDF