Publications by authors named "M Reconditi"

Creatine (Cr) is essential for cellular energy homeostasis, particularly in muscle and brain tissues. Creatine Transporter Deficiency (CTD), an X-linked disorder caused by mutations in the SLC6A8 gene, disrupts Cr transport, leading to intellectual disability, speech delay, autism, epilepsy, and various non-neurological symptoms. In addition to neurological alterations, Creatine Transporter knockout (CrT) mice exhibit severe muscle atrophy and functional impairments.

View Article and Find Full Text PDF

In maximally Ca-activated demembranated fibres from the mammalian skeletal muscle, the depression of the force by lowering the temperature below the physiological level (~35 °C) is explained by the reduction of force in the myosin motor. Instead, cooling is reported to not affect the force per motor in Ca-activated cardiac trabeculae from the rat ventricle. Here, the mechanism of the cardiac performance depression by cooling is reinvestigated with fast sarcomere-level mechanics.

View Article and Find Full Text PDF

The regulation of heart function is attributed to a dual filament mechanism: i) the Ca-dependent structural changes in the regulatory proteins of the thin, actin-containing filament making actin available for myosin motor attachment, and ii) the release of motors from their folded (OFF) state on the surface of the thick filament allowing them to attach and pull the actin filament. Thick filament mechanosensing is thought to control the number of motors switching ON in relation to the systolic performance, but its molecular basis is still controversial. Here, we use high spatial resolution X-ray diffraction data from electrically paced rat trabeculae and papillary muscles to provide a molecular explanation of the modulation of heart performance that calls for a revision of the mechanosensing hypothesis.

View Article and Find Full Text PDF
Article Synopsis
  • - Myosin II functions as a muscle motor in thick filaments of striated muscle, converting chemical energy into force and movement through ATP interactions with actin filaments.
  • - Different myosin isoforms in skeletal muscles are tailored for specific functions, enabling slow muscles to maintain posture and fast muscles to facilitate movement.
  • - The study evaluates mechanokinetic parameters of slow and fast muscle myosin isoforms using a synthetic nanomachine, leading to insights that could inform future research on myosin in mutant models or human samples.
View Article and Find Full Text PDF

The medaka fish () is a vertebrate model used in developmental biology and genetics. Here we explore its suitability as a model for investigating the molecular mechanisms of human myopathies caused by mutations in sarcomeric proteins. To this end, the relevant mechanical parameters of the intact skeletal muscle of wild-type medaka are determined using the transparent tail at larval stage 40.

View Article and Find Full Text PDF