Publications by authors named "M Raison"

In the field of transcutaneous functional electrical stimulation (FES), open-loop and closed-loop control strategies have been developed to restore functions of the lower limbs: walking, standing up, maintaining posture, and cycling. These strategies require sensors that provide feedback information on muscle activity or biomechanics of movement. Since muscle response induced by transcutaneous FES is nonlinear, time-varying, and dependent on muscle fatigue evolution, the choice of sensor type and control strategy becomes critical.

View Article and Find Full Text PDF

To assess the severity and progression of adolescents with idiopathic scoliosis (AIS), radiography with X-rays is usually used. The methods based on statistical observations have been developed from 3D reconstruction of the trunk or topography. Machine learning has shown great potential to classify the severity of scoliosis on imaging data, generally on X-ray measurements.

View Article and Find Full Text PDF

Background: Scoliosis curves present transverse plane deviations due to vertebral rotation. The Schroth method supports thoracic derotation by training patients to exert "derotational" breathing based on assumed enhanced ventilation in areas called "humps" in scoliosis and a patient's ability to voluntarily direct ventilation in less ventilated areas called "flats."

Objective: To assess the asymmetric ventilation distribution and the ability of patients to direct their ventilation to perform derotational breathing.

View Article and Find Full Text PDF

Sensorless and sensor-based upper limb exoskeletons that enhance or support daily motor function are limited for children. This review presents the different needs in pediatrics and the latest trends when developing an upper limb exoskeleton and discusses future prospects to improve accessibility. First, the principal diagnoses in pediatrics and their respective challenge are presented.

View Article and Find Full Text PDF