Publications by authors named "M Rabaud"

Bluff bodies moving in a fluid experience a drag force which usually increases with velocity. However in a particular velocity range a drag crisis is observed, i.e.

View Article and Find Full Text PDF
Mach-like capillary-gravity wakes.

Phys Rev E Stat Nonlin Soft Matter Phys

August 2014

We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length.

View Article and Find Full Text PDF

It has been recently emphasized that the angle of maximum wave amplitude α in the wake of a disturbance of finite size can be significantly narrower than the maximum value α_{K}=sin^{-1}(1/3)≃19.47^{∘} predicted by the classical analysis of Kelvin. For axisymmetric disturbance, a simple argument based on the Cauchy-Poisson initial-value problem suggests that the wake angle decreases following a Mach-like law at large velocity, α≃Fr_{L}^{-1}, where Fr_{L}=U/sqrt[gL] is the Froude number based on the disturbance velocity U, its size L, and gravity g.

View Article and Find Full Text PDF

From the analysis of a set of airborne images of ship wakes, we show that the wake angles decrease as U(-1) at large velocities, in a way similar to the Mach cone for supersonic airplanes. This previously unnoticed Mach-like regime is in contradiction with the celebrated Kelvin prediction of a constant angle of 19.47° independent of the ship's speed.

View Article and Find Full Text PDF

We investigate, in the rotating drum configuration, the transition from the regime of discontinuous avalanches observed at low angular velocity to the regime of continuous flow observed at higher velocity. Instead of the hysteretic transition reported previously by Rajchenbach [Phys. Rev.

View Article and Find Full Text PDF