Plutonium metal undergoes an anomalously large 25% collapse in volume from its largest volume δ phase (δ-Pu) to its low temperature α phase, yet the underlying thermodynamic mechanism has largely remained a mystery. Here we use magnetostriction measurements to isolate a previously hidden yet substantial electronic contribution to the entropy of δ-Pu, which we show to be crucial for the stabilization of this phase. The entropy originates from two competing instabilities of the 5f-electron shell, which we show to drive the volume of Pu in opposing directions, depending on the temperature and volume.
View Article and Find Full Text PDFWith large forested urban areas, the city of Edmonton, Alberta, Canada, faces high annual costs of replacing trees injured by deicing salts that are commonly used for winter road maintenance. Ectomycorrhizal fungi form symbiotic associations with tree roots that allow trees to tolerate the detrimental effects of polluted soils. Here, we examined mycorrhizal colonization of Pinus contorta by germinating seeds in soils collected from different locations: (1) two urban areas within the city of Edmonton, and (2) an intact pine forest just outside Edmonton.
View Article and Find Full Text PDFIn this work, we review single mode SiO₂ fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity () as low as a few parts in one hundred million (≈10).
View Article and Find Full Text PDFFor materials that harbour a continuous phase transition, the susceptibility of the material to various fields can be used to understand the nature of the fluctuating order and hence the nature of the ordered state. Here we use anisotropic biaxial strain to probe the nematic susceptibility of URu2Si2, a heavy fermion material for which the nature of the low temperature 'hidden order' state has defied comprehensive understanding for over 30 years. Our measurements reveal that the fluctuating order has a nematic component, confirming reports of twofold anisotropy in the broken symmetry state and strongly constraining theoretical models of the hidden-order phase.
View Article and Find Full Text PDF