Publications by authors named "M R McMurray"

The yeast buds at sites pre-determined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a pre-determined polarity site drives initial polarized morphogenesis independent of mating partner location.

View Article and Find Full Text PDF

Background: The study aimed to investigate the reduction of hematoma risk during MRI-guided breast biopsies by evaluating position-dependent intervention parameters and characteristics of the target lesion.

Materials And Methods: We retrospectively analyzed 252 percutaneous MRI-guided breast biopsies performed at a single center between January 2013 and December 2023. Two groups were built depending on the severity of relative hematoma formation (using a cut-off ≤ 7.

View Article and Find Full Text PDF

Protein-based nanomachines drive every cellular process. An explosion of high-resolution structures of multiprotein complexes has improved our understanding of what these machines look like and how they work, but we still know relatively little about how they assemble in living cells. For example, it has only recently been appreciated that many complexes assemble co-translationally, with at least one subunit still undergoing active translation while already interacting with other subunits.

View Article and Find Full Text PDF
Article Synopsis
  • The budding yeast Saccharomyces cerevisiae's life cycle traits, like stable haploid clones and controllable mating, make it valuable for lab research.
  • Research showed that natural isolates have diverse HO alleles, but limited diversity was found in North American oak isolates, indicating broad dispersal.
  • A hands-on educational activity enabled students to isolate and identify wild yeast, fostering collaboration among different educational levels and showing adaptability for other regions.
View Article and Find Full Text PDF

The yeast buds at sites pre-determined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a pre-determined polarity site drives initial polarized morphogenesis independent of mating partner location.

View Article and Find Full Text PDF