Int J Surg Case Rep
November 2024
Heterogenization of molecular catalysts on (photo)electrode surfaces is required to design devices performing processes enabling to store renewable energy in chemical bonds. Among the various strategies to immobilize molecular catalysts, direct chemical bonding to conductive surfaces presents some advantages because of the robustness of the linkage. When the catalyst is, as it is often the case, a transition metal complex, the anchoring group has to be connected to the complex through the ligands, and an important question is thus raised on the influence of this function on the redox and on the catalytic properties of the complex.
View Article and Find Full Text PDFThis study aims to examine the expression profiles of the miR-183 cluster (miR-96/182/183) in pheochromocytoma. Pheochromocytoma tissues were prospectively collected from 50 patients with pheochromocytoma. Expression of miR-183 cluster members and SDHB protein expression were analyzed in these tissues by quantitative real-time polymerase chain reaction and immunohistochemistry, respectively.
View Article and Find Full Text PDFThe incorporation of lipophilic ligands into the bilayer membrane of vesicles offers the possibility to induce, upon binding of suitable metal ions, a variety of processes, in particular vesicle aggregation and fusion and generation of vesicle arrays, under the control of specific metal-ligand recognition events. Synthetic bipyridine lipoligands Bn bearing a bipyridine unit as head group were prepared and incorporated into large unilamellar vesicles. The addition of Ni2+ or Co2+ metal ions led to the formation of complexes MBn and MBn2 followed by spontaneous fusion to generate giant multilamellar vesicles.
View Article and Find Full Text PDF