There is an unmet need to provide medical personnel with a Food and Drug Administration (FDA)-approved biodosimetry method for quantifying individualized absorbed dose response to inform treatment decisions for a very large patient population potentially exposed to ionizing radiation in the event of a nuclear incident. Validation of biodosimetry devices requires comparison of absorbed dose estimates to delivered dose as an indication of accuracy; however, comparison to delivered dose does not account for biological variability or an individual's radiosensitivity. As there is no FDA-cleared gene-expression-based biodosimetry method for determining biological response to radiation, results from accuracy comparisons to delivered dose yield relatively wide tolerance intervals or uncertainty.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2020
The rational design and exploration of safe, robust, and inexpensive energy storage systems with high flexibility are greatly desired for integrated wearable electronic devices. Herein, a flexible all-solid-state battery possessing competitive electrochemical performance and mechanical stability has been realized by easy manufacture processes using carbon nanotube enhanced phosphate electrodes of LiTi(PO) and LiV(PO) and a highly conductive solid polymer electrolyte made of polyphosphazene/PVDF-HFP/LiBOB [PVDF-HFP, poly(vinylidene fluoride--hexafluoropropylene)]. The components were chosen based on their low toxicity, systematic manufacturability, and (electro-)chemical matching in order to ensure ambient atmosphere battery assembly and to reach high flexibility, good safety, effective interfacial contacts, and high chemical and mechanical stability for the battery while in operation.
View Article and Find Full Text PDFThe rapid increase in atmospheric temperature detected in the last decades in the Western Antarctic Peninsula was accompanied by a strong glacier retreat and an increase in production of melting water, as well as changes in the sea-ice dynamic. The objective of this study was to analyze the succession of micro- and mesozooplankton during a warm annual cycle (December 2010-December 2011) in an Antarctic coastal environment (Potter Cove). The biomass of zooplankton body size classes was used to predict predator-prey size relationships (i.
View Article and Find Full Text PDFIn the Northern Patagonian gulfs of Argentina (Golfo Nuevo and Golfo San José), blooms of toxigenic microalgae and the detection of their associated phycotoxins are recurrent phenomena. The present study evaluated the transfer of phycotoxins from toxigenic microalgae to mesozooplankton in Golfo Nuevo and Golfo San José throughout an annual cycle (December 2014-2015 and January 2015-2016, respectively). In addition, solid-phase adsorption toxin tracking (SPATT) samplers were deployed for the first time in these gulfs, to estimate the occurrence of phycotoxins in the seawater between the phytoplankton samplings.
View Article and Find Full Text PDFPlanktonic ciliates constitute a fundamental component among microzooplankton and play a prominent role in carbon transport at the base of marine food webs. How these organisms respond to shifting environmental regimes is unclear and constitutes a current challenge under global ocean changes. Here we examine a multiannual field survey covering 25 years in the Bahía Blanca Estuary (Argentina), a shallow, flood-plain system dominated by wind and tidal energy.
View Article and Find Full Text PDF