Heat-killed lactobacilli seem to have protective effects against oxidative stress and neurotoxicity. This study aimed to evaluate the antioxidant properties of specific heat-killed lactobacilli extracts and determine their neuroprotective effects against the neurotoxicity induced by blood plasma from people with multiple sclerosis (MS). The antioxidant activity of the three heat-killed lactobacilli was measured using the DPPH assay.
View Article and Find Full Text PDFIntroduction: Olfactory ensheathing cells (OECs) are widely used in transplantation studies. The high purification of this unique cell type is valuable for medical applications. Although recent improvements in OECs isolation procedures opened a new era in this field, the high purification efficacy and viability rate are still of concern.
View Article and Find Full Text PDFThe effect of chemotherapy for anti-glioblastoma is limited due to insufficient drug delivery across the blood-brain-barrier. Poloxamer 188-coated nanoparticles can enhance the delivery of nanoparticles across the blood-brain-barrier. This study presents the design, preparation, and evaluation of a combination of PLGA nanoparticles (PLGA NPs) loaded with methotrexate (P-MTX NPs) and PLGA nanoparticles loaded with paclitaxel (P-PTX NPs), both of which were surface-modified with poloxamer188.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM) is a malignant brain tumor that frequently occurs alongside other central nervous system (CNS) conditions. The secretome of GBM cells contains a diverse array of proteins released into the extracellular space, influencing the tumor microenvironment. These proteins can serve as potential biomarkers for GBM due to their involvement in key biological processes, exploring the secretome biomarkers in GBM research represents a cutting-edge strategy with significant potential for advancing diagnostic precision, treatment monitoring, and ultimately improving outcomes for patients with this challenging brain cancer.
View Article and Find Full Text PDFBackground: Mesenchymal stem cell (MSC) derived exosomes (MSC-DE) have been demonstrated to be potential candidates for the treatment of rat spinal cord injury (SCI).
Objective: The effect of AD-MSC and AD-MSC-DE encapsulated into collagen and fibrin hydrogels on the treatment of SCI in a rat animal model was investigated for introducing a new effective SCI treatment method.
Materials And Methods: The AD-MSC-DE was isolated using ultra-centrifugation at 100,000×g for 120 min and characterized by different methods.