Laccase-like multicopper oxidases are recognized for their potential to alter the reactivity of lignins for application in value-added products. Typically, model compounds are employed to discover such enzymes; however, they do not represent the complexity of industrial lignin substrates. In this work, a screening pipeline was developed to test enzymes simultaneously on model compounds and industrial lignins.
View Article and Find Full Text PDFWildlife health assessments help identify populations at risk of starvation, disease, and decline from anthropogenic impacts on natural habitats. We conducted an overview of available health assessment studies in noncaptive vertebrates and devised a framework to strategically integrate health assessments in population monitoring. Using a systematic approach, we performed a thorough assessment of studies examining multiple health parameters of noncaptive vertebrate species from 1982 to 2020 (n = 261 studies).
View Article and Find Full Text PDFWe classified the genes encoding carbohydrate-active enzymes (CAZymes) in 17 sequenced genomes representing 16 evolutionarily diverse species. We performed a phylogenetic analysis of the encoding enzymes, along with experimentally characterized CAZymes, to assign molecular function to the Aspergilli CAZyme families and subfamilies. Genome content analysis revealed that the numbers of CAZy genes per CAZy family related to plant biomass degradation follow closely the taxonomic distance between the species.
View Article and Find Full Text PDFBiosynthesis of steviol glycosides in planta proceeds via two cytochrome P450 enzymes (CYPs): kaurene oxidase (KO) and kaurenoic acid hydroxylase (KAH). KO and KAH function in succession with the support of a NADPH-dependent cytochrome P450 reductase (CPR) to convert kaurene to steviol. This work describes a platform for recombinant production of steviol glucosides (SGs) in Saccharomyces cerevisiae, demonstrating the full reconstituted pathway from the simple sugar glucose to the SG precursor steviol.
View Article and Find Full Text PDFBackground: Plant biomass is the major substrate for the production of biofuels and biochemicals, as well as food, textiles and other products. It is also the major carbon source for many fungi and enzymes of these fungi are essential for the depolymerization of plant polysaccharides in industrial processes. This is a highly complex process that involves a large number of extracellular enzymes as well as non-hydrolytic proteins, whose production in fungi is controlled by a set of transcriptional regulators.
View Article and Find Full Text PDF