Publications by authors named "M R Delbecq"

Nanoelectronic hybrid devices combining superconductors and a one-dimensional nanowire are promising platforms to realize topological superconductivity and its resulting exotic excitations. The bulk of experimental studies in this context are transport measurements where conductance peaks allow to perform a spectroscopy of the low lying electronic states and potentially to identify signatures of the aforementioned excitations. The complexity of the experimental landscape calls for a benchmark in an elemental situation.

View Article and Find Full Text PDF

The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) have recently attracted considerable attention, with appealing properties for terahertz (THz) technology. This includes the demonstration of large thermal bolometric effects in GQDs when illuminated by THz radiation. However, the interaction of THz photons with GQDs in the Coulomb blockade regime, i.

View Article and Find Full Text PDF

The interplay of superconductivity with non-trivial spin textures is promising for the engineering of non-Abelian Majorana quasiparticles. Spin-orbit coupling is crucial for the topological protection of Majorana modes as it forbids other trivial excitations at low energy but is typically intrinsic to the material. Here, we show that coupling to a magnetic texture can induce both a strong spin-orbit coupling of 1.

View Article and Find Full Text PDF