Bacterial efflux pumps are critical for resistance to antibiotics and for virulence. We previously identified small molecules that inhibit efflux pumps (efflux pump modulators, EPMs) and prevent pathogen replication in host cells. Here, we used medicinal chemistry to increase the activity of the EPMs against pathogens in cells into the nanomolar range.
View Article and Find Full Text PDFThe discovery of compound , a new, totally synthetic 1,2,4-oxadiazole antibacterial agent, is described. This oxadiazole displays highly selective, bactericidal killing of , the bacterium that causes infection (CDI) in both hospital and community settings. The narrow spectrum of activity exhibited by should avoid any disruption of commensal anaerobic bacteria in the gut microbiome, minimizing chances for recurrent CDI.
View Article and Find Full Text PDFNew approaches for combatting microbial infections are needed. One strategy for disrupting pathogenesis involves developing compounds that interfere with bacterial virulence. A critical molecular determinant of virulence for Gram-negative bacteria are efflux pumps of the resistance-nodulation-division (RND) family, which includes AcrAB-TolC.
View Article and Find Full Text PDFJ Org Chem
May 2020
3-Aryl- and 3-heteroaryloxazolidin-2-ones, by virtue of the diverse pharmacologic activities exhibited by them after subtle changes to their appended substituents, are becoming increasingly important and should be considered privileged chemical structures. The iodocyclocarbamation reaction has been extensively used to make many 3alkyl-5-(halomethyl)oxazolidin-2-ones, but the corresponding aromatic congeners have been relatively underexplored. We suggest that racemic 3-aryl- and 3-heteroaryl-5-(iodomethyl)oxazolidin-2-ones, readily prepared by the iodocyclocarbamation reaction of N-allylated aryl or heteroaryl carbamates, may be useful intermediates for the rapid preparation of potential lead compounds with biological activity.
View Article and Find Full Text PDFThe success of linezolid stimulated significant efforts to discover new agents in the oxazolidinone class. Over a dozen oxazolidinones have reached the clinic, but many were discontinued due to lack of differentiated potency, inadequate pharmacokinetics, and safety risks that included myelosuppression. Four oxazolidinones are currently undergoing clinical evaluation.
View Article and Find Full Text PDF