Organosilicate glass (OSG) films are a critical component in modern electronic devices, with their electrical properties playing a crucial role in device performance. This comprehensive review systematically examines the influence of chemical composition, vacuum ultraviolet (VUV) irradiation, and plasma treatment on the electrical properties of these films. Through an extensive survey of literature and experimental findings, we elucidate the intricate interplay between these factors and the resulting alterations in electrical conductivity, dielectric constant, and breakdown strength of OSG films.
View Article and Find Full Text PDFUV-induced photoluminescence of organosilica films with ethylene and benzene bridging groups in their matrix and terminal methyl groups on the pore wall surface was studied to reveal optically active defects and understand their origin and nature. The careful selection of the film's precursors and conditions of deposition and curing and analysis of chemical and structural properties led to the conclusion that luminescence sources are not associated with the presence of oxygen-deficient centers, as in the case of pure SiO. It is shown that the sources of luminescence are the carbon-containing components that are part of the low-k-matrix, as well as the carbon residues formed upon removal of the template and UV-induced destruction of organosilica samples.
View Article and Find Full Text PDFWe applied time-domain Brillouin scattering (TDBS) for the characterization of porogen-based organosilicate glass (OGS) films deposited by spin-on-glass technology and cured under different conditions. Although the chemical composition and porosity measured by Fourier-transform infrared (FTIR) spectroscopy and ellipsometric porosimetry (EP) did not show significant differences between the films, remarkable differences between them were revealed by the temporal evolution of the Brillouin frequency (BF) shift of the probe light in the TDBS. The observed modification of the BF was a signature of the light-induced modification of the films in the process of the TDBS experiments.
View Article and Find Full Text PDFOrganosilicate glass (OSG)-based porous low dielectric constant (low-) films with different molar ratios of 1,3,5-tris(triethoxysilyl)benzene to 1,3-bis(triethoxysilyl)benzene bridging organic groups (1:3 and 1:7) were spin-on deposited, followed by a soft bake in air and N at 150 °C and hard bake in air and N at 400 °C. Non-ionic template (Brij30) concentrations were varied from 0 to 41 wt% to control the porosity of the films. The chemical composition of the matrix of the films was evaluated and discussed with the shrinkage of the film during the curing, refractive indices, mechanical properties, -values, porosity and pore structure.
View Article and Find Full Text PDFA dataset in this report is regarding an article, "A detailed ellipsometric porosimetry and positron annihilation spectroscopy study of porous organosilicate glass films with various ratios of methyl terminal and ethylene bridging groups" [1]. The data of porous organosilicate glass (OSG) low-k films was obtained by Fourier-Transform Infrared spectroscopy (FTIR), Ellipsometric Porosimetry (EP), Photoluminescence (PL) Spectroscopy. The data shows that the mechanical properties of OSG low-k films are principally controlled by introducing both terminal methyl and bridging organic groups, and porosity with proper pore size.
View Article and Find Full Text PDF