Background: NOSO-5O2 is the first clinical candidate of a new antimicrobial class-the odilorhabdins. The pharmacodynamics of NOSO-502 were studied in vitro and in vivo to establish the pharmacodynamic index (PDI) driver.
Methods: A dilutional pharmacokinetic system was used for in vitro experiments.
Quantum technologies using electron spins have the advantage of employing chemical qubit media with tunable properties. The principal objective of material engineers is to enhance photoexcited spin yields and quantum spin relaxation. In this study, we demonstrate a facile synthetic approach to control spin properties in charge-transfer cocrystals consisting of 1,2,4,5-tetracyanobenzene (TCNB) and acetylated anthracene.
View Article and Find Full Text PDFJ Antimicrob Chemother
December 2024
Optically interfaced molecular spins are a promising platform for quantum sensing and imaging. Key for such applications is optically detecting coherent spin manipulation at room temperature. Here, using the photoexcited triplet state of organic chromophores (pentacene doped in p-terphenyl), we optically detect coherent spin manipulation with photoluminescence contrasts exceeding 15% at room temperature, both in a molecular crystal and thin film.
View Article and Find Full Text PDFInt J Antimicrob Agents
October 2024
Objectives: To define the in vitro pharmacodynamics of taniborbactam against Enterobacterales with CTXM-15, KPC, AmpC, and OXA-48 β-lactamases.
Methods: An in vitro pharmacokinetic model was used to simulate serum concentrations associated with cefepime 2G by 1 h infusion 8 h. Taniborbactam was given in exposure ranging and fractionation simulations.