This communication presents direct method for experimental determining the matched spot size in a plasma optical waveguide, created in a slow capillary discharge. It can be used for Laser Wakefield Acceleration experiments in addition to interferometry for fast control of optical properties of discharge plasma. The measurements are done by means of the comparison of the laser beam size at the entrance and at the exit of the plasma channel.
View Article and Find Full Text PDFAn experimental method is proposed for the creation of plasma optical waveguides at low electron densities. The method consists of creating a hollow neutral-hydrogen channel by means of fast local heating of a hydrogen volume by a needlelike electron beam, followed by laser ionization of the hydrogen to provide the plasma waveguide. Results of numerical simulations are presented which show that guiding with an axial electron density in the range of 10(17) cm-3 can be achieved with a matched spot size of 30 microm.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2005
Dust is found in plasmas used in industrial applications, such as microelectronics and solar cell manufacturing, in fusion plasmas, where it is usually the result of plasma-wall interactions, and in plasmas in space, such as planetary atmospheres, cometary tails, planetary rings, interstellar molecular clouds, and star and planet formation regions. In plasma applications, magnetic fields are occasionally used, mainly to confine the plasma. In space, however, magnetic fields are very often present and they may strongly influence the behavior of dusty plasma, for instance in the formation of stars and planets.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2003
A dusty radio-frequency argon discharge is simulated with the use of a two-dimensional fluid model. In the model, discharge quantities, such as the fluxes, densities, and electric field are calculated self-consistently. The charge and density of the dust are calculated with an iterative method.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2003
Clouds of dust particles in radio frequency discharges often show a periodic vortexlike motion, especially near the edges of the electrodes or near the tip of an electrostatic probe. These vortices often last as long as the discharge is powered. In a previous paper we have followed a small number of individual dust particles in a discharge under microgravity conditions, moving under the influence of forces computed by means of a self-consistent two-dimensional hydrodynamic model, and interacting via a screened Coulomb potential.
View Article and Find Full Text PDF