Epigenetic deregulation through altered DNA methylation is a fundamental feature of tumorigenesis, but tumor data from bulk tissue samples contain different proportions of malignant and non-malignant cells that may confound the interpretation of DNA methylation values. The adjustment of DNA methylation data based on tumor purity has been proposed to render both genome-wide and gene-specific analyses more precise, but it requires sample purity estimates. Here we present PureBeta, a single-sample statistical framework that uses genome-wide DNA methylation data to first estimate sample purity and then adjust methylation values of individual CpGs to correct for sample impurity.
View Article and Find Full Text PDFThe tumour immune microenvironment (TIME) in breast cancer is acknowledged with an increasing role in treatment response and prognosis. With a growing number of immune markers analysed, digital image analysis may facilitate broader TIME understanding, even in single-plex IHC data. To facilitate analyses of the latter an open-source image analysis pipeline, Tissue microarray MArker Quantification (TMArQ), was developed and applied to single-plex stainings for p53, CD3, CD4, CD8, CD20, CD68, FOXP3, and PD-L1 (SP142 antibody) in a 218-patient triple negative breast cancer (TNBC) cohort with complementary pathology scorings, clinicopathological, whole genome sequencing, and RNA-sequencing data.
View Article and Find Full Text PDFLung cancer is primarily a disease of the elderly, with a median age at diagnosis around 70 years. In our study we sought to address the question of whether and how clinical characteristics, molecular alterations and molecular phenotypes differ between patient populations with early-stage lung adenocarcinoma (AC) with respect to age at diagnosis. Patients were stratified based on age at diagnosis into five systematic age bins (<50, 50-60, 60-70, 70-80 and ≥80 years).
View Article and Find Full Text PDFA common issue affecting DNA methylation analysis in tumor tissue is the presence of a substantial amount of non-tumor methylation signal derived from the surrounding microenvironment. Although approaches for quantifying and correcting for the infiltration component have been proposed previously, we believe these have not fully addressed the issue in a comprehensive and universally applicable way. We present a multi-population framework for adjusting DNA methylation beta values on the Illumina 450/850K platform using generic purity estimates to account for non-tumor signal.
View Article and Find Full Text PDFComput Struct Biotechnol J
April 2022
Gene expression profiling together with unsupervised analysis methods, typically clustering methods, has been used extensively in cancer research to unravel, e.g., new molecular subtypes that hold promise of disease refinement that may ultimately benefit patients.
View Article and Find Full Text PDF