Angew Chem Int Ed Engl
October 2016
We have developed a convenient method for the direct synthesis of peptide thioesters, versatile intermediates for peptide ligation and cyclic peptide synthesis. The technology uses a modified Boc SPPS strategy that avoids the use of anhydrous HF. Boc in situ neutralization protocols are used in combination with Merrifield hydroxymethyl resin and TFA/TMSBr cleavage.
View Article and Find Full Text PDFA backbone amide bond protecting group, 2-hydroxy-4-methoxy-5-nitrobenzyl (Hmnb), improved the synthesis of aggregation and aspartimide-prone peptides. Introduction of Hmnb is automated and carried out during peptide assembly by addition of 4-methoxy-5-nitrosalicylaldehyde to the peptidyl-resin and on-resin reduction to the secondary amine. Acylation of the hindered secondary amine is aided by the formation of an internal nitrophenol ester that undergoes a favourable O,N intramolecular acyl transfer.
View Article and Find Full Text PDFThe synthesis of peptides rich in aggregation prone sequences can be improved with backbone protection. We report the automated introduction of backbone protection to a peptide. This new method was applied in a fully-automated synthesis, giving improved handling, quality and yield of several challenging target sequences.
View Article and Find Full Text PDFThe Plasmodium falciparum cysteine peptidases FP-2 (falcipain-2) and FP-3 (falcipain-3), members of the papain-like CAC1 family, are essential haemoglobinases and are therefore potential anti-malarial drug targets. To facilitate a rational drug discovery programme, in the current study we analysed the synthetic substrate and model inhibitor profiles of FP-2 and FP-3 as well as BP-2 (berghepain-2), an orthologue from the rodent parasite Plasmodium berghei. With respect to substrate catalysis, FP-2 exhibited a promiscuous substrate profile based around a consensus non-primeside motif, FP-3 was somewhat more restricted and BP-2 was comparatively specific.
View Article and Find Full Text PDFThe ability to selectively conjugate carbohydrate molecules to a protein is a key step in the preparation of conjugate vaccines, while facile methods for linking carbohydrates to polymers or solid surfaces to produce diagnostic probes and functional microarrays are also sought. Here, we describe a simple, single-step method of producing glycosylhydrazides from unprotected sugars, which were then linked in a controlled manner to a desired carrier, through an appropriate linker. The method was chemoselective and did not require coupling reagents, and the native pyranose form of the reducing end residue was retained.
View Article and Find Full Text PDF