Publications by authors named "M Pursch"

This paper describes an approach to achieve low parts per billion (ppb) concentration level detection using a reversed-phase ultrahigh-performance liquid chromatographic ultraviolet absorbance detection method with large-volume feed injection (FI) for analytes in dichloromethane (DCM). FI is a novel technology that allows sample injection at a defined speed into the LC mobile phase. We demonstrate this approach for a mixture of bisphenol A and its diglycidyl ether derivatives in DCM.

View Article and Find Full Text PDF

Due to their potential adverse health effects, some N-nitrosamines in drug products are strictly regulated with very low maximum daily intake limits. Nitrosamines can be formed from the reaction of nitrite and secondary or tertiary amines when both species co-exist in the drug synthesis or formulation process. One key strategy to mitigate nitrosamine risk in drugs is to select low-nitrite containing pharma excipients for formulation.

View Article and Find Full Text PDF

With the recent development of small particle stationary-phases and dedicated instrumentation, the combination of size-exclusion chromatography (SEC) with ultra-high performance liquid chromatography (UHPLC) technology has been realized. It opened up a new polymer analysis technique called UHP-SEC. Although high resolution and fast analysis can be achieved, the multi-solvent suitability for a given column was limited to either organic or aqueous eluents.

View Article and Find Full Text PDF

We investigated the possibility of reducing the effect of precolumn band broadening (PreCBB) by sandwiching the sample between two small plugs of an immiscible liquid. It has been found that in cases of severe PreCBB, improvements in peak efficiency can amount up to 20 times for the early-eluting compounds. For smaller degrees of PreCBB, the gain on the efficiency of early-eluting compounds is smaller (order of 50%), yet it is still significant.

View Article and Find Full Text PDF

Comprehensive two-dimensional liquid chromatography (LC × LC) is an attractive separation technique that allows achieving high peak capacities and information on chemical correlations. Unfortunately, its application in industrial practice is still not widespread due to limiting factors such as complex method development, tedious method optimization and solvent-incompatibility (such as solvent-strength mismatch or immiscibility experienced during fraction transfer). A severe case of solvent-incompatibility is encountered in the comprehensive coupling of normal-phase LC and reversed-phase LC (NPLC × RPLC).

View Article and Find Full Text PDF