We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system.
View Article and Find Full Text PDFCarbon nanotube heterojunctions (HJs), which seamlessly connect nanotubes of different chiral structure using a small number of atomic-scale defects, represent the ultimate scaling of electronic interfaces. Here we report the first electrical transport measurements on a HJ formed between semiconducting and metallic nanotubes of known chiralities. These measurements reveal asymmetric IV-characteristics and the presence of a quantum dot (QD) with approximately 60 meV charging energy and approximately 75 meV level spacing.
View Article and Find Full Text PDFWe present an experimental investigation on the scaling of resistance in individual single-walled carbon nanotube devices with channel lengths that vary 4 orders of magnitude on the same sample. The electron mean free path is obtained from the linear scaling of resistance with length at various temperatures. The low temperature mean free path is determined by impurity scattering, while at high temperature, the mean free path decreases with increasing temperature, indicating that it is limited by electron-phonon scattering.
View Article and Find Full Text PDFThe quantum Hall (QH) effect in two-dimensional electrons and holes in high quality graphene samples is studied in strong magnetic fields up to 45 T. QH plateaus at filling factors nu = 0, +/-1, +/-4 are discovered at magnetic fields B > 20 T, indicating the lifting of the fourfold degeneracy of the previously observed QH states at nu = +/-4(absolute value(n) + 1/2), where n is the Landau-level index. In particular, the presence of the nu = 0, +/-1 QH plateaus indicates that the Landau level at the charge neutral Dirac point splits into four sublevels, lifting sublattice and spin degeneracy.
View Article and Find Full Text PDFMolecular electronics is often limited by the poorly defined nature of the contact between the molecules and the metal surface. We describe a method to wire molecules into gaps in single-walled carbon nanotubes (SWNTs). Precise oxidative cutting of a SWNT produces carboxylic acid-terminated electrodes separated by gaps of =10 nanometers.
View Article and Find Full Text PDF