Background And Purpose: A prompt-gamma imaging (PGI) slit-camera was recently applied successfully in clinical proton treatments using pencil beam scanning (PBS) and double scattering (DS). However, its full capability under clinical conditions has still to be systematically evaluated. Here, the performance of the slit-camera is systematically assessed in well-defined error scenarios using realistic treatment deliveries to an anthropomorphic head phantom.
View Article and Find Full Text PDFTo ensure the optimal outcome of proton therapy, in vivo range verification is highly desired. Prompt γ-ray imaging (PGI) is a possible approach for in vivo range monitoring. For PGI, dedicated detection systems, e.
View Article and Find Full Text PDFPrompt γ-ray imaging with a knife-edge shaped slit camera provides the possibility of verifying proton beam range in tumor therapy. Dedicated experiments regarding the characterization of the camera system have been performed previously. Now, we aim at implementing the prototype into clinical application of monitoring patient treatments.
View Article and Find Full Text PDFRange verification and dose monitoring in proton therapy is considered as highly desirable. Different methods have been developed worldwide, like particle therapy positron emission tomography (PT-PET) and prompt gamma imaging (PGI). In general, these methods allow for a verification of the proton range.
View Article and Find Full Text PDFBackground And Purpose: To improve precision of particle therapy, in vivo range verification is highly desirable. Methods based on prompt gamma rays emitted during treatment seem promising but have not yet been applied clinically. Here we report on the worldwide first clinical application of prompt gamma imaging (PGI) based range verification.
View Article and Find Full Text PDF