Publications by authors named "M Predota"

In nature and many technological applications, aqueous solutions are in contact with patterned surfaces, which are dynamic over time scales spanning from ps to μs. For instance, in biology, exposed polar and apolar residues of biomolecules form a pattern, which fluctuates in time due to side chain and conformational motions. At metal/and oxide/water interfaces, the pattern is formed by surface topmost atoms, and fluctuations are due to, e.

View Article and Find Full Text PDF

Graphene-based applications, such as supercapacitors or capacitive deionization, take place in an aqueous environment, and they benefit from molecular-level insights into the behavior of aqueous electrolyte solutions in single-digit graphene nanopores with a size comparable to a few molecular diameters. Under single-digit graphene nanoconfinement (smallest dimension <2 nm), water and ions behave drastically different than in the bulk. Most aqueous electrolytes in the graphene-based applications as well as in nature contain a mix of electrolytes.

View Article and Find Full Text PDF

In this work, the interaction of NaCl aqueous solution with graphene (G), graphene oxide (GO), and graphite oxide (GTO) is studied using the ReaxFF module of Amsterdam Modeling Suite (AMS) software. We consider four models using the NaCl aqueous solution, containing a graphene sheet (G), a single sheet of GO with epoxide and hydroxyl groups on its surface, 4 layers of GO to model GTO, and a bulk NaCl solution as a reference. The structural and dynamical properties of G, GO, and GTO were quantified by analyzing the functional groups, radial distribution functions, density profiles and diffusivities of water and ions.

View Article and Find Full Text PDF

Understanding the microscopic behaviour of aqueous electrolyte solutions in graphene-based ultrathin nanochannels is important in nanofluidic applications such as water purification, fuel cells, and molecular sensing. Under extreme confinement (<2 nm), the properties of water and ions differ drastically from those in the bulk phase. We studied the structural and diffusion behaviour of prototypical aqueous solutions of electrolytes (LiCl, NaCl, and KCl) confined in both neutral and positively-, and negatively-charged graphene nanochannels.

View Article and Find Full Text PDF

Investigating the electrical double layer (EDL) structure has been a long-standing challenge and has seen the emergence of several sophisticated techniques able to probe selectively the few molecular layers of a solid/water interface. While a qualitative estimation of the thickness of the EDL can be obtained using simple theoretical models, following experimentally its evolution is not straightforward and can be even more complicated in nano- or microscale systems, particularly when changing the ionic concentration by several orders of magnitude. Here, we bring insight into the structure of the EDL of SiO nanoparticle suspensions and its evolution with increasing ionic concentration using angle-resolved second harmonic scattering (AR-SHS).

View Article and Find Full Text PDF