When small objects are placed at a water-air interface, attractive and repulsive interactions appear due to liquid deformations. Although it is commonly admitted that two floating objects deforming the liquid interface in the same way are only attracting, we show that in the case of objects whose height does not vary during the interaction, the situation is much more complex than expected. In fact, attraction and repulsion can coexist at different ranges, so that equilibrium distances are observed.
View Article and Find Full Text PDFCapillarity driven self-assembly is a way to create spontaneous structures along liquid interfaces in between bottom-up and top-down fabrication methods. Based on multipolar capillary interactions between elementary floating object, simple to complex structures can been achieved by designing objects with specific 3D shapes. We show herein that a switchable self-assembled structure can be obtained with a shape memory polymer.
View Article and Find Full Text PDFSelf-assembly due to capillary forces is a common method for generating 2D mesoscale structures made of identical particles floating at some liquid-air interface. We show herein how to create soft entities that deform or not the liquid interface as a function of the strength of some applied magnetic field. These smart floating objects self-assemble or not depending on the application of an external field.
View Article and Find Full Text PDFFerromagnetic particles are incorporated in a thin soft elastic matrix. A lamella, made of this smart material, is studied experimentally and modeled. We show herein that thin films can be actuated using an external magnetic field applied through the system.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.