Recent studies suggest an increased risk of reinfection with the SARS-CoV-2 Omicron variant compared with previous variants, potentially due to an increased ability to escape immunity specific to older variants, high antigenic divergence of Omicron from earlier virus variants as well as its altered cell entry pathway. The present study sought to investigate epidemiological evidence for differential SARS-CoV-2 reinfection intervals and incidence rates for the Delta versus Omicron variants within Wales. Reinfections in Wales up to February 2022 were defined using genotyping and whole genome sequencing.
View Article and Find Full Text PDFInvasive tract-tracing studies in rodents implicate a direct connection between the subiculum and bed nucleus of the stria terminalis (BNST) as a key component of neural pathways mediating hippocampal regulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis. A clear characterisation of the connections linking the subiculum and BNST in humans and non-human primates is lacking. To address this, we first delineated the projections from the subiculum to the BNST using anterograde tracers injected into macaque monkeys, revealing evidence for a monosynaptic subiculum-BNST projection involving the fornix.
View Article and Find Full Text PDFNeuropsychological and functional magnetic resonance imaging evidence suggests that the ability to vividly remember our personal past, and imagine future scenarios, involves two closely connected regions: the hippocampus and ventromedial prefrontal cortex (vmPFC). Despite evidence of a direct anatomical connection from hippocampus to vmPFC, it is unknown whether hippocampal-vmPFC structural connectivity supports both past- and future-oriented episodic thinking. To address this, we applied a novel deterministic tractography protocol to diffusion-weighted magnetic resonance imaging (dMRI) data from a group of healthy young adult humans who undertook an adapted past-future autobiographical interview (portions of this data were published in Hodgetts et al.
View Article and Find Full Text PDFThe dorsal hippocampal commissure (DHC) is a white matter tract that provides interhemispheric connections between temporal lobe brain regions. Despite the importance of these regions for learning and memory, there is scant evidence of a role for the DHC in successful memory performance. We used diffusion-weighted magnetic resonance imaging (DW-MRI) and white matter tractography to reconstruct the DHC in both humans (in vivo) and nonhuman primates (ex vivo).
View Article and Find Full Text PDFBackground: People with temporal lobe epilepsy (TLE) report significant problems with learning and memory. There are no effective therapies for combatting these problems in people with TLE, resulting in an unmet therapeutic need. The lack of treatment is, in part, due to a poor understanding of the neurobiology underlying these memory deficits.
View Article and Find Full Text PDF