Computer vision (CV)-based systems using cameras and recognition algorithms offer touchless, cost-effective, precise, and versatile hand tracking. These systems allow unrestricted, fluid, and natural movements without the constraints of wearable devices, gaining popularity in human-system interaction, virtual reality, and medical procedures. However, traditional CV-based systems, relying on stationary cameras, are not compatible with mobile applications and demand substantial computing power.
View Article and Find Full Text PDFTelerehabilitation is important for post-stroke or post-surgery rehabilitation because the tasks it uses are reproducible. When combined with assistive technologies, such as robots, virtual reality, tracking systems, or a combination of them, it can also allow the recording of a patient's progression and rehabilitation monitoring, along with an objective evaluation. In this paper, we present the structure, from actors and functionalities to software and hardware views, of a novel framework that allows cooperation between patients and therapists.
View Article and Find Full Text PDFBackground And Objectives: Electroencephalography (EEG) measures the electrical brain activity in real-time by using sensors placed on the scalp. Artifacts due to eye movements and blinking, muscular/cardiac activity and generic electrical disturbances, have to be recognized and eliminated to allow a correct interpretation of the Useful Brain Signals (UBS). Independent Component Analysis (ICA) is effective to split the signal into Independent Components (IC) whose re-projection on 2D topographies of the scalp (images also called Topoplots) allows to recognize/separate artifacts and UBS.
View Article and Find Full Text PDFPurpose: Osteoporosis affects more than 200 million people worldwide: its prevalence increases with age and is actually growing due to the constant population aging. Women are at greater risk than men, but in recent years it has become increasingly evident that osteoporosis represents a significantly important problem also for men. However, osteoporosis in men is still poorly studied, underdiagnosed and inadequately treated.
View Article and Find Full Text PDFComputer Tomography (CT) imaging of the chest is a valid diagnosis tool to detect COVID-19 promptly and to control the spread of the disease. In this work we propose a light Convolutional Neural Network (CNN) design, based on the model of the SqueezeNet, for the efficient discrimination of COVID-19 CT images with respect to other community-acquired pneumonia and/or healthy CT images. The architecture allows to an accuracy of 85.
View Article and Find Full Text PDF