Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
March 2017
Polymeric biomaterials with antibacterial effects are requisite materials in the fight against hospital-acquired infections. An effective way for constructing a second generation of antibacterials is to exploit the synergic effect of (i) patterning of polymeric materials by a laser, and (ii) deposition of noble metals in their nanostructured forms. With this approach, we prepared highly-ordered periodic structures (ripples) on polyethylene naphthalate (PEN).
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2017
Non-conventional antimicrobial agents, such as palladium nanostructures, have been increasingly used in the medicinal technology. However, experiences uncovering their harmful and damaging effects to human health have begun to appear. In this study, we have focused on in vitro cytotoxicity assessment of Pd nanostructures supported on a biocompatible polymer.
View Article and Find Full Text PDFSecondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail.
View Article and Find Full Text PDFSilver nanolayers were sputtered on polytetrafluoroethylene (PTFE) and subsequently transformed into discrete nanoislands by thermal annealing. The Ag/PTFE composites prepared under different conditions were characterized by several complementary methods (goniometry, UV-visible spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy), and new data on the mechanism of Ag layer growth and Ag atom clustering under annealing were obtained. Biocompatibility of selected Ag/PTFE composites was studied in vitro using vascular smooth muscle cell (VSMC) cultures.
View Article and Find Full Text PDF