Publications by authors named "M Polacci"

Article Synopsis
  • The style of volcanic eruptions is influenced by how gas and magma separate as they move upward, with strong gas-melt coupling leading to explosive eruptions and weaker coupling causing lava flows.
  • Researchers used x-ray radiography in a high-pressure/high-temperature setup to study bubble dynamics in basaltic magmas, revealing that low-viscosity magmas allow bubbles to merge quickly, maintaining gas-melt coupling.
  • This innovative method enhances understanding of volcanic processes, potentially improving safety measures and risk assessment for volcanic activities.
View Article and Find Full Text PDF

The majority of basaltic magmas stall in the Earth's crust as a result of the rheological evolution caused by crystallization during transport. However, the relationships between crystallinity, rheology and eruptibility remain uncertain because it is difficult to observe dynamic magma crystallization in real time. Here, we present in-situ 4D data for crystal growth kinetics and the textural evolution of pyroxene during crystallization of trachybasaltic magmas in high-temperature experiments under water-saturated conditions at crustal pressures.

View Article and Find Full Text PDF

Magma crystallisation is a fundamental process driving eruptions and controlling the style of volcanic activity. Crystal nucleation delay, heterogeneous and homogeneous nucleation and crystal growth are all time-dependent processes, however, there is a paucity of real-time experimental data on crystal nucleation and growth kinetics, particularly at the beginning of crystallisation when conditions are far from equilibrium. Here, we reveal the first in situ 3D time-dependent observations of crystal nucleation and growth kinetics in a natural magma, reproducing the crystallisation occurring in real-time during a lava flow, by combining a bespoke high-temperature environmental cell with fast synchrotron X-ray microtomography.

View Article and Find Full Text PDF

A series of computed microtomography experiments are reported which were performed by using a third-generation synchrotron radiation source on volcanic rocks from various active hazardous volcanoes in Italy and other volcanic areas in the world. The applied technique allowed the internal structure of the investigated material to be accurately imaged at the micrometre scale and three-dimensional views of the investigated samples to be produced as well as three-dimensional quantitative measurements of textural features. The geometry of the vesicle (gas-filled void) network in volcanic products of both basaltic and trachytic compositions were particularly focused on, as vesicle textures are directly linked to the dynamics of volcano degassing.

View Article and Find Full Text PDF