Publications by authors named "M Poirot"

Accurately predicting individual antidepressant treatment response could expedite the lengthy trial-and-error process of finding an effective treatment for major depressive disorder (MDD). We tested and compared machine learning-based methods that predict individual-level pharmacotherapeutic treatment response using cortical morphometry from multisite longitudinal cohorts. We conducted an international analysis of pooled data from six sites of the ENIGMA-MDD consortium (n = 262 MDD patients; age = 36.

View Article and Find Full Text PDF

Background: Attention-Deficit/Hyperactivity Disorder (ADHD) is commonly treated with methylphenidate (MPH). Although highly effective, MPH treatment still has a relatively high non-response rate of around 30%, highlighting the need for a better understanding of treatment response. Radiomics of T1-weighted images and Diffusion Tensor Imaging (DTI) combined with machine learning approaches could offer a novel method for assessing MPH treatment response.

View Article and Find Full Text PDF

Phytosterols are plant sterols that are important secondary plant metabolites with significant pharmacological properties. Their presence in the plant kingdom concerns many unrelated botanical families such as oleageneous plants and cereals. The structures of phytosterols evoke those of cholesterol.

View Article and Find Full Text PDF

Objective: Response to antidepressant treatment in major depressive disorder varies substantially between individuals, which lengthens the process of finding effective treatment. The authors sought to determine whether a multimodal machine learning approach could predict early sertraline response in patients with major depressive disorder. They assessed the predictive contribution of MR neuroimaging and clinical assessments at baseline and after 1 week of treatment.

View Article and Find Full Text PDF