Current biomedical imaging techniques are vital for the diagnosis of various diseases. They are related to the development of multimodal probes encompassing all the functionalities required for comprehensive imaging. In this context, we applied a simple and reproducible wet synthesis route to produce such probes.
View Article and Find Full Text PDFPhotoluminescent (PL) metal and metal oxide nanoclusters (NCs), with a size of just several nanometers, are a separate class of nanomaterials abundant with new attractive optical, physical, and chemical properties and biocompatibility. However, the synthesis of PL magnetic NCs attachment of PL NCs to iron oxide-based nanoparticles (NPs) is still problematic. Motivated by this, herein, we report the development of a microwave-driven conjugation approach of red-fluorescent gold nanoclusters (BSA@AuNCs) to superparamagnetic NPs.
View Article and Find Full Text PDFHighly biocompatible nanostructures for multimodality imaging are critical for clinical diagnostics improvements in the future. Combining optical imaging with other techniques may lead to important advances in diagnostics. The purpose of such a system would be to combine the individual advantages of each imaging method to provide reliable and accurate information at the site of the disease bypassing the limitations of each.
View Article and Find Full Text PDFNanotechnology has emerged as a promising solution to permanent elimination of cancer. However, nanoparticles themselves lack specificity to tumors. Due to enhanced migration to tumors, mesenchymal stem cells (MSCs) were suggested as cell-mediated delivery vehicles of nanoparticles.
View Article and Find Full Text PDFBackground: Human mesenchymal stem cells (MSCs) have drawn much attention in the field of regenerative medicine for their immunomodulatory and anti-inflammatory effects. MSCs possess specific tumor-oriented migration and incorporation highlighting the potential for MSCs to be used as an ideal carrier for anticancer agents. Bone marrow is the main source of MSCs for clinical applications.
View Article and Find Full Text PDF