To date, evaluating the diets of natural enemies like carabids has largely been limited to spatially explicit and short-term sampling. This leaves a knowledge gap for the intra-annual dynamics of carabid diets, and the provision and timing of delivery of natural pest control services. Season-long pitfall trapping of adult carabids was conducted in conventional winter wheat fields, from November 2018 to June 2019, in five French departments.
View Article and Find Full Text PDFNatural pest and weed regulation are essential for agricultural production, but the spatial distribution of natural enemies within crop fields and its drivers are mostly unknown. Using 28 datasets comprising 1204 study sites across eight Western and Central European countries, we performed a quantitative synthesis of carabid richness, activity densities and functional traits in relation to field edges (i.e.
View Article and Find Full Text PDFBackground: Virus Yellows (VY), a disease caused by several aphid-borne viruses, is a major threat to the global sugar beet production. Following the ban of neonicotinoid-based seed treatments against aphids in Europe, increased efforts are needed to monitor and forecast aphid population spread during the sugar beet growing season. In particular, predicting aphid flight seasonal activity could allow anticipation of the timing and intensity of crop colonisation and contribute to the proper implementation of management methods.
View Article and Find Full Text PDFThe role of winged aquatic insects that emerge from streams and subsidize terrestrial ecosystems has been demonstrated for natural forest landscapes, but almost no information is available for intensive agricultural landscapes. This study is the first to estimate aquatic subsidies provided by flying insects that emerge from streams and land on cropland. We investigated three major groups of aquatic insects - Trichoptera, Ephemeroptera and Chironomidae (Diptera) - that emerged from 12 third-order temperate, agricultural streams.
View Article and Find Full Text PDFPristine sub-Antarctic islands terrestrial ecosystems, including many endemic species, are highly threatened by human-induced cosmopolitan plant invasion. We propose that native plant suppression could be further facilitated by the subsequent invasion by generalist pest species that could exacerbate their competitive exclusion through the process of apparent competition. By comparing the biological parameters of an invasive aphid species, Myzus ascalonicus, on one native (Acaena magellanica) and one invasive (Senecio vulgaris) plant species, we showed that survival and fecundity were higher and development time lower on the native plant species than on the invasive one.
View Article and Find Full Text PDF