Publications by authors named "M Pioro-Ladriere"

An error-corrected quantum processor will require millions of qubits, accentuating the advantage of nanoscale devices with small footprints, such as silicon quantum dots. However, as for every device with nanoscale dimensions, disorder at the atomic level is detrimental to quantum dot uniformity. Here we investigate two spin qubits confined in a silicon double quantum dot artificial molecule.

View Article and Find Full Text PDF

Quantum computers are expected to outperform conventional computers in several important applications, from molecular simulation to search algorithms, once they can be scaled up to large numbers-typically millions-of quantum bits (qubits). For most solid-state qubit technologies-for example, those using superconducting circuits or semiconductor spins-scaling poses a considerable challenge because every additional qubit increases the heat generated, whereas the cooling power of dilution refrigerators is severely limited at their operating temperature (less than 100 millikelvin). Here we demonstrate the operation of a scalable silicon quantum processor unit cell comprising two qubits confined to quantum dots at about 1.

View Article and Find Full Text PDF

Once the periodic properties of elements were unveiled, chemical behaviour could be understood in terms of the valence of atoms. Ideally, this rationale would extend to quantum dots, and quantum computation could be performed by merely controlling the outer-shell electrons of dot-based qubits. Imperfections in semiconductor materials disrupt this analogy, so real devices seldom display a systematic many-electron arrangement.

View Article and Find Full Text PDF

Spin-orbit coupling is relatively weak for electrons in bulk silicon, but enhanced interactions are reported in nanostructures such as the quantum dots used for spin qubits. These interactions have been attributed to various dissimilar interface effects, including disorder or broken crystal symmetries. In this Letter, we use a double-quantum-dot qubit to probe these interactions by comparing the spins of separated singlet-triplet electron pairs.

View Article and Find Full Text PDF

The point-like nature and exquisite magnetic field sensitivity of the nitrogen vacancy (NV) center in diamond can provide information about the inner workings of magnetic nanocircuits in complement with traditional transport techniques. Here, we use a single NV in bulk diamond to probe the stray field of a ferromagnetic nanowire controlled by spin transfer (ST) torques. We first report an unambiguous measurement of ST tuned, parametrically driven, large-amplitude magnetic oscillations.

View Article and Find Full Text PDF