Organochlorides and particularly chlorophenols are environmental pollutants that deserve special attention. Enzymatic membrane bioreactors may be alternatives for efficiently removing such hazardous organochlorides from aqueous solutions. We propose here a novel enzymatic membrane bioreactor comprising an ultrafiltration membrane GR81PP, electrospun fibers made of cellulose acetate, and laccase immobilized using an incubation and a fouling approach.
View Article and Find Full Text PDFCeramic materials with high surface area, large and open porosity are considered excellent supports for enzyme immobilization owing to their stability and reusability. The present study reports the electrospinning of aluminum silicate nanofiber supports from sol-gel precursors, the impact of different fabrication parameters on the microstructure of the nanofibers and their performance in enzyme immobilization. A change in nanofiber diameter and pore size of the aluminum silicate nanofibers was observed upon varying specific processing parameters, such as the sol-composition (precursor and polymer concentration), the electrospinning parameters and the subsequent heat treatment (calcination temperature).
View Article and Find Full Text PDFEnzymatic membrane reactors equipped with multifunctional biocatalytic membranes are promising and sustainable alternatives for removal of micropollutants, including steroid estrogens, under mild conditions. Thus, in this study an effort was made to produce novel multifunctional biocatalytic polyelectrolyte multilayer membranes via polyelectrolyte layer-by-layer assembly with laccase enzyme immobilized between or into polyelectrolyte layers. In this study, multifunctional biocatalytic membranes are considered as systems composed of commercially available filtration membrane modified by polyelectrolytes and immobilized enzymes, which are produced for complex treatment of water pollutants.
View Article and Find Full Text PDFNowadays, the increasing amounts of dyes present in wastewaters and even water bodies is an emerging global problem. In this work we decided to fabricate new biosystems made of nanofiltration or ultrafiltration membranes combined with laccase entrapped between polystyrene electrospun fibers and apply them for decolorization of aqueous solutions of three azo dyes, C.I.
View Article and Find Full Text PDFThe production of succinic acid from fermentation is a promising approach for obtaining building-block chemicals from renewable sources. However, the limited bio-succinic yield from fermentation and the complexity of purification has been making the bio-succinic acid production not competitive with petroleum-based succinic acid. Membrane electrolysis has been identified to be a promising technology in both production and separation stages of fermentation processes.
View Article and Find Full Text PDF