Clinical dosimetry is typically performed using ion chambers calibrated in terms of absorbed dose to water. As primary measurement standards for this quantity for low and medium energy x-rays are available only since a few years, most dosimetry protocols for this photon energy range are still based on air kerma calibration. For that reason, data for beam quality correction factors [Formula: see text], necessary for the application of dose to water based protocols, are scarce in literature.
View Article and Find Full Text PDFThe IAEA is currently coordinating a multi-year project to update the TRS-398 Code of Practice for the dosimetry of external beam radiotherapy based on standards of absorbed dose to water. One major aspect of the project is the determination of new beam quality correction factors, k , for megavoltage photon beams consistent with developments in radiotherapy dosimetry and technology since the publication of TRS-398 in 2000. Specifically, all values must be based on, or consistent with, the key data of ICRU Report 90.
View Article and Find Full Text PDFThe high dose and dose-per-pulse rates (up to 130 mGy/pulse) produced by some intraoperative radiation therapy (IORT) accelerators pose specific dosimetric problems due to the high density of electric charge per pulse produced in the ionization chamber cavity. In particular, the correction factor for ion recombination, k , calculated with the traditional two-voltage method is significantly overestimated and three alternative models have been proposed in the literature allowing for the presence of a free-electron component. However, at present there is no general consensus on the best model to assess the ion recombination correction and controversy remains on the uncertainty associated with k .
View Article and Find Full Text PDFThe beam quality correction factor, [Formula: see text], which corrects for the difference in the ionization chamber response between the reference and clinical beam quality, is an integral part of radiation therapy dosimetry. The uncertainty of [Formula: see text] is one of the most significant sources of uncertainty in the dose determination. To improve the accuracy of available [Formula: see text] data, four partners calculated [Formula: see text] factors for 10 ionization chamber models in linear accelerator beams with accelerator voltages ranging from 6 MV to 25 MV, including flattening-filter-free (FFF) beams.
View Article and Find Full Text PDF