Outer membrane vesicles (OMVs) are nanostructures derived from the outer membrane of Gram-negative bacteria. We previously demonstrated that vaccination with endotoxin-free OMVs isolated from an strain lacking lipooligosaccharide (LOS) biosynthesis, due to a mutation in , provides full protection in a murine sepsis model. The present study characterizes the protein content of highly-purified OMVs isolated from LOS-replete and LOS-deficient strains.
View Article and Find Full Text PDFIntroduction: Human cerebral organoids (hCOs) derived from pluripotent stem cells are very promising for the study of neurodevelopment and the investigation of the healthy or diseased brain. To help establish hCOs as a powerful research model, it is essential to perform the morphological characterization of their cellular components in depth.
Methods: In this study, we analyzed the cell types consisting of hCOs after culturing for 45 days using immunofluorescence and reverse transcriptase qualitative polymerase chain reaction (RT-qPCR) assays.
Global plastic production has increased exponentially in recent decades, and a significant part of it persists in the environment, where it degrades into microplastics and nanoplastics (MPs and NPs). These can enter in humans by ingestion, inhalation, and dermal routes, and there is scientific evidence that they are able to reach the systemic circulation and penetrate and accumulate in various tissues and organs. Neurodevelopmental toxicity of NPs is one of the most worrying effects, as they can cross the blood-brain barrier.
View Article and Find Full Text PDFis one of the most pathogenic species within the genus. Increased antifungal resistance has been reported, which is in part due to the organism's ability to form biofilms. In natural products derived from plants, such as essential oils (EOs) or their major components, there is significant potential to develop new antifungals or to both enhance the efficacy and reduce the toxicity of conventional antifungals.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons in the spinal cord, cerebral cortex, and medulla oblongata. Most patients present a clinical phenotype of classic ALS-with predominant atrophy, muscle weakness, and fasciculations-and survival of 3 to 5 years following diagnosis. In the present review, we performed a literature search to provide an update on the etiology and pathophysiological mechanisms involved in ALS.
View Article and Find Full Text PDF