Publications by authors named "M Piccone"

Bovine rhinitis viruses (BRVs) cause mild respiratory disease of cattle. In this study, a near full-length genome sequence of a virus named RS3X (formerly classified as bovine rhinovirus type 1), isolated from infected cattle from the UK in the 1960s, was obtained and analyzed. Compared to other closely related Aphthoviruses, major differences were detected in the leader protease (L(pro)), P1, 2B, and 3A proteins.

View Article and Find Full Text PDF

The role of non-structural protein 3A of foot-and-mouth disease virus (FMDV) on the virulence in cattle has received significant attention. Particularly, a characteristic 10-20 amino acid deletion has been implicated as responsible for virus attenuation in cattle: a 10 amino acid deletion in the naturally occurring, porcinophilic FMDV O1 Taiwanese strain, and an approximately 20 amino acid deletion found in egg-adapted derivatives of FMDV serotypes O1 and C3. Previous reports using chimeric viruses linked the presence of these deletions to an attenuated phenotype in cattle although results were not conclusive.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV), the causative agent of foot-and-mouth disease, is an Apthovirus within the Picornaviridae family. Replication of the virus occurs in association with replication complexes that are formed by host cell membrane rearrangements. The largest viral protein in the replication complex, 2C, is thought to have multiple roles during virus replication.

View Article and Find Full Text PDF

FMDV O1 subtype undergoes antigenic variation under diverse growth conditions. Of particular interest is the amino acid variation observed at position 56 within the structural protein VP3. Selective pressures influence whether histidine (H) or arginine (R) is present at this position, ultimately influencing in vitro plaque morphology and in vivo pathogenesis in cattle.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV) initiates translation from two in-frame AUG codons producing two forms of the leader (L) proteinase, Lab (starting at the first AUG) and Lb (starting at second AUG). In a previous study, we have demonstrated that a cDNA-derived mutant FMDV (A24-L1123) containing a 57-nucleotide transposon (tn) insertion between the two AUG initiation codons (inter-AUG region) was completely attenuated in cattle, suggesting that this region is involved in viral pathogenesis. To investigate the potential role of the Lab protein in attenuation, we have introduced two epitope tags (Flag: DYKDDDK and HA: YPYDVPDYA) or a small tetracysteine motif (tc: CCGPCC) into the pA24-L1123 infectious DNA clone.

View Article and Find Full Text PDF