Publications by authors named "M Piccinini"

The need to develop synthetic bone substitutes with structures, properties, and functions similar to bone and capable of preventing microbial infections is still an ongoing challenge. This research is focused on the preparation and characterization of three-dimensional porous scaffolds based on hydroxyapatite (HA)-functionalized calcium carbonate loaded with silver nanoparticles and simvastatin (SIMV). The scaffolds were prepared using the foam replica method, with a polyurethane (PU) sponge as a template, followed by successive polymer removal and sintering.

View Article and Find Full Text PDF

Stimuli-responsive microgels have attracted great interest in recent years as building blocks for fabricating smart surfaces with many technological applications. In particular, PNIPAM microgels are promising candidates for creating thermo-responsive scaffolds to control cell growth and detachment via temperature stimuli. In this framework, understanding the influence of the solid substrate is critical for tailoring microgel coatings to specific applications.

View Article and Find Full Text PDF

Passive solid-state radiation detectors, based on the visible photoluminescence (PL) of radiation-induced colour centres in optically transparent lithium fluoride (LiF), polycrystalline thin films are under investigation for proton beam advanced diagnostics. After proton exposure, the latent images stored in LiF as local formations of stable Fand Faggregate defects, are directly read with a fluorescence microscope under illumination in the blue spectral range. Adopting a suitable irradiation geometry, the energy density that protons deposit in the material can be recorded as a spatial distribution of these light-emitting defects, from which a luminous replica of the proton Bragg curve can be thereafter extracted and analysed to reconstruct the proton beam energy spectrum.

View Article and Find Full Text PDF

Nominally-pure lithium fluoride (LiF) crystals were irradiated with monochromatic hard x-rays of energy 5, 7, 9 and 12 keV at the METROLOGIE beamline of the SOLEIL synchrotron facility, in order to understand the role of the selected x-ray energy on their visible photoluminescence (PL) response, which is used for high spatial resolution 2D x-ray imaging detectors characterized by a wide dynamic range. At the energies of 7 and 12 keV the irradiations were performed at five different doses corresponding to five uniformly irradiated areas, while at 5 and 9 keV only two irradiations at two different doses were carried out. The doses were planned in a range between 4 and 1.

View Article and Find Full Text PDF

Lithium fluoride (LiF) crystals and thin films are utilized as radiation detectors for energy diagnostics of proton beams. This is achieved by analyzing the Bragg curves in LiF obtained by imaging the radiophotoluminescence of color centers created by protons. In LiF crystals, the Bragg peak depth increases superlinearly with the particle energy.

View Article and Find Full Text PDF