Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562-3468).
View Article and Find Full Text PDFDevelopmental language disorder (DLD) is a common neurodevelopmental disorder with largely unknown etiology. Rare copy number variants (CNVs) have been implicated in the genetic architecture of other neurodevelopmental disorders (NDDs), which have led to clinical genetic testing recommendations for these disorders; however, the evidence is still lacking for DLD. We analyzed rare and de novo CNVs in 58 probands with severe DLD, their 159 family members and 76 Swedish typically developing children using high-resolution microarray.
View Article and Find Full Text PDFA whole-genome linkage analysis in a Finnish pedigree of eight cases with developmental dyslexia (DD) revealed several regions shared by the affected individuals. Analysis of coding variants from two affected individuals identified rs146011974G > A (Ala1039Thr), a rare variant within the NCAN gene co-segregating with DD in the pedigree. This variant prompted us to consider this gene as a putative candidate for DD.
View Article and Find Full Text PDFThe axon guidance receptor, Robo1, controls the pathfinding of callosal axons in mice. To determine whether the orthologous ROBO1 gene is involved in callosal development also in humans, we studied polymorphisms in the ROBO1 gene and variation in the white matter structure in the corpus callosum using both structural magnetic resonance imaging and diffusion tensor magnetic resonance imaging. We found that five polymorphisms in the regulatory region of ROBO1 were associated with white matter density in the posterior part of the corpus callosum pathways.
View Article and Find Full Text PDF