Publications by authors named "M Petrus"

Induction of fetal hemoglobin (HbF) has been shown to be a viable therapeutic approach to treating sickle cell disease and potentially other β-hemoglobinopathies. To identify targets and target-modulating small molecules that enhance HbF expression, we engineered a human umbilical-derived erythroid progenitor reporter cell line (HUDEP2_HBG1_HiBiT) by genetically tagging a HiBiT peptide to the carboxyl (C)-terminus of the endogenous HBG1 gene locus, which codes for γ-globin protein, a component of HbF. Employing this reporter cell line, we performed a chemogenomic screen of approximately 5000 compounds annotated with known targets or mechanisms that have achieved clinical stage or approval by the US Food and Drug Administration (FDA).

View Article and Find Full Text PDF

Helicobacter pylori (H. pylori) is a type of bacteria that infects the stomach. The detection of H.

View Article and Find Full Text PDF

In our modern times, improvised explosive devices (IEDs) have become more sophisticated than ever, capable of causing destruction and loss of life. The creative use of homemade substances for IEDs manufactures has led to efforts in developing sensitive detection methods that can anticipate, identify and protect against improvised attacks. Laser-based spectroscopic techniques provide rapid and accurate detection of chemicals in improvised explosives, but no single method can detect all components of all explosives.

View Article and Find Full Text PDF

Among the many commonly encountered hazards, improvised explosive devices (IEDs) remain the primary threat to military and civilian personnel due to the ease of their production and the widespread availability of their raw materials and precursors. Identifying traces of potential precursors is the first step in developing appropriate control measures. An interesting approach is to identify the precursors that are released around the site as they are handled and transformed into the final IEDs.

View Article and Find Full Text PDF

This study examined the content of nicotine-delivery products using terahertz time-domain spectroscopy (THz-TDS) and breath ethylene investigated with CO laser photoacoustic spectroscopy (CO LPAS) system as a biomarker of oxidative stress after smoking. The THz-TDS method provided valuable information on the transmission spectra of tobacco and nicotine in smoking products. From the CO LPAS data it was observed that in cigarette (TC) smoking the mean breath ethylene was 687 parts per billion (ppb), while in electronic cigarettes and tobacco heating devices smoking the mean ethylene was 56 ppb and 48 ppb, respectively.

View Article and Find Full Text PDF