Inspired by the properties of natural chitin, the present work provides the first solid foundation for growing conformal ultrathin antibacterial films of organic chitin through a solvent-free molecular layer deposition (MLD) process. This work establishes the initial groundwork for growing biomimetic hybrid cuticles by combining sugar-type molecules with vapor-phase metal-organic precursors, which we term metallochitins or, more generally, metallosaccharides. The MLD process, featuring mild temperatures and solvent-free conditions, provides exceptional conformality and thickness precision, ensuring highly conformal coatings on diverse high aspect ratio substrates.
View Article and Find Full Text PDFThin films containing 3D-ordered semiconductor quantum wires offer a great tool to improve the properties of photosensitive devices. In the present work, we investigate the photo-generated current in thin films consisting of an interconnected 3D-ordered network of Ge quantum wires in an alumina matrix. The films are prepared using nitrogen-assisted magnetron sputtering co-deposition of Ge and AlO.
View Article and Find Full Text PDFThe success of the osseointegration process depends on the surface characteristics and chemical composition of dental implants. Therefore, the titanium dental implant was functionalised with a composite coating of alendronate and hydrolysed collagen, which are molecules with a positive influence on the bone formation. The results of the quantum chemical calculations at the density functional theory level confirm a spontaneous formation of the composite coating on the titanium implant, ∆* = -8.
View Article and Find Full Text PDFEnabling self-healing of materials is crucially important for saving resources and energy in numerous emerging applications. While strategies for the self-healing of polymers are advanced, mechanisms for semiconducting inorganic materials are scarce due to the lack of suitable healing agents. Here a concept for the self-healing of metal oxides is developed.
View Article and Find Full Text PDFPure and Co-doped BaAlO [Ba(AlCo)O, = 0, 0.0077, 0.0379] powder samples were prepared by a facile hydrothermal route.
View Article and Find Full Text PDF