Background: Leisure time physical activity (LTPA) provides both health benefits and risks, particularly during a pandemic. During the COVID-19 pandemic, significant increases in close-to-home LTPA raised concerns for public health and land managers alike. This project illustrates a novel, integrated monitoring approach to estimating COVID-19 risk exposure during trail-related LTPA, with implications for other public spaces.
View Article and Find Full Text PDFA series of structurally related monosubstituted 1-[(alkenyloxy)methyl]-, 1-[(alkynyloxy)methyl]-, and 1-[(aralkyloxy)methyl]-2-[(hydroxyimino)methyl]-3-methyli midazolium halides were prepared and evaluated. All new compounds were characterized with respect to (hydroxyimino)methyl acid dissociation constant, nucleophilicity, and octanol-buffer partition coefficient. The alkynyloxy-substituted compounds were also evaluated in vitro with respect to reversible inhibition of human erythrocyte (RBC) acetylcholinesterase (AChE) and kinetics of reactivation of human AChE inhibited by ethyl p-nitrophenyl methylphosphonate (EPMP).
View Article and Find Full Text PDFA series of structurally related mono- and bis-1,3-disubstituted 2-[(hydroxyimino)methyl]imidazolium halides were evaluated in vitro for their ability to reactivate electric eel, bovine, and human erythrocyte (RBC) acetylcholinesterases (AChE) inhibited by ethyl p-nitrophenyl methylphosphonate (EPMP) and 3,3-dimethyl-2-butyl methyl-phosphonofluoridate (soman, GD). All new compounds were characterized for (hydroxyimino)methyl acid dissociation constant, nucleophilicity, octanol-buffer partition coefficient, reversible AChE inhibition, and kinetics of reactivation of EPMP-inhibited AChEs. For GD-inhibited AChEs, maximal reactivation was used to compare compounds since rapid phosphonyl enzyme dealkylation "aging" complicated interpretation of kinetic constants.
View Article and Find Full Text PDF