On 12 November 2014, the Philae lander descended towards comet 67P/Churyumov-Gerasimenko, bounced twice off the surface, then arrived under an overhanging cliff in the Abydos region. The landing process provided insights into the properties of a cometary nucleus. Here we report an investigation of the previously undiscovered site of the second touchdown, where Philae spent almost two minutes of its cross-comet journey, producing four distinct surface contacts on two adjoining cometary boulders.
View Article and Find Full Text PDFA model based on a specific phantom, called QuAArC, has been designed for the evaluation of planning and verification systems of complex radiotherapy treatments, such as volumetric modulated arc therapy (VMAT). This model uses the high accuracy provided by the Monte Carlo (MC) simulation of log files and allows the experimental feedback from the high spatial resolution of films hosted in QuAArC. This cylindrical phantom was specifically designed to host films rolled at different radial distances able to take into account the entrance fluence and the 3D dose distribution.
View Article and Find Full Text PDFPurpose: The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice.
Methods: The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called "biophysical" map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming.
The manufacturer has introduced the new EBT2 film model so as to improve its predecessor, the EBT radiochromic film model. According to the manufacturer, some of its main advantages include a higher tolerance to light exposure and it can correct non-uniformity of the active layer thickness using a marker dye. However, the equivalence in uniformity between both models was questioned by some authors, and the asymmetrical configuration of layers of the EBT2 film model produces a new dependence on the film side being scanned (front and back orientation).
View Article and Find Full Text PDF