Publications by authors named "M Perkuhn"

Objectives: Differentiation between COVID-19 and community-acquired pneumonia (CAP) in computed tomography (CT) is a task that can be performed by human radiologists and artificial intelligence (AI). The present study aims to (1) develop an AI algorithm for differentiating COVID-19 from CAP and (2) evaluate its performance. (3) Evaluate the benefit of using the AI result as assistance for radiological diagnosis and the impact on relevant parameters such as accuracy of the diagnosis, diagnostic time, and confidence.

View Article and Find Full Text PDF

Objective: Liver cancer is one of the most commonly diagnosed cancer, and energy-based tumor ablation is a widely accepted treatment. Automatic and robust segmentation of liver tumors and ablation zones would facilitate the evaluation of treatment success. The purpose of this study was to develop and evaluate an automatic deep learning based method for (1) segmentation of liver and liver tumors in both arterial and portal venous phase for pre-treatment CT, and (2) segmentation of liver and ablation zones in both arterial and portal venous phase for after ablation treatment.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) is the most common tumor entity spreading to the brain and up to 50% of patients develop brain metastases (BMs). Detection of BMs on MRI is challenging with an inherent risk of missed diagnosis.

Purpose: To train and evaluate a deep learning model (DLM) for fully automated detection and 3D segmentation of BMs in NSCLC on clinical routine MRI.

View Article and Find Full Text PDF

Purpose: To evaluate whether a deep learning model (DLM) could increase the detection sensitivity of radiologists for intracranial aneurysms on CT angiography (CTA) in aneurysmal subarachnoid hemorrhage (aSAH).

Methods: Three different DLMs were trained on CTA datasets of 68 aSAH patients with 79 aneurysms with their outputs being combined applying ensemble learning (DLM-Ens). The DLM-Ens was evaluated on an independent test set of 104 aSAH patients with 126 aneuryms (mean volume 129.

View Article and Find Full Text PDF

Background And Purpose: Malignant melanoma is an aggressive skin cancer in which brain metastases are common. Our aim was to establish and evaluate a deep learning model for fully automated detection and segmentation of brain metastases in patients with malignant melanoma using clinical routine MR imaging.

Materials And Methods: Sixty-nine patients with melanoma with a total of 135 brain metastases at initial diagnosis and available multiparametric MR imaging datasets (T1-/T2-weighted, T1-weighted gadolinium contrast-enhanced, FLAIR) were included.

View Article and Find Full Text PDF