IEEE Trans Pattern Anal Mach Intell
February 2023
Deep metric learning has yielded impressive results in tasks such as clustering and image retrieval by leveraging neural networks to obtain highly discriminative feature embeddings, which can be used to group samples into different classes. Much research has been devoted to the design of smart loss functions or data mining strategies for training such networks. Most methods consider only pairs or triplets of samples within a mini-batch to compute the loss function, which is commonly based on the distance between embeddings.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2022
In he past decade, object detection has achieved significant progress in natural images but not in aerial images, due to the massive variations in the scale and orientation of objects caused by the bird's-eye view of aerial images. More importantly, the lack of large-scale benchmarks has become a major obstacle to the development of object detection in aerial images (ODAI). In this paper, we present a large-scale Dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI.
View Article and Find Full Text PDFThe training of autoencoder (AE) focuses on the selection of connection weights via a minimization of both the training error and a regularized term. However, the ultimate goal of AE training is to autoencode future unseen samples correctly (i.e.
View Article and Find Full Text PDFGraph matching is an important and persistent problem in computer vision and pattern recognition for finding node-to-node correspondence between graphs. However, graph matching that incorporates pairwise constraints can be formulated as a quadratic assignment problem (QAP), which is NP-complete and results in intrinsic computational difficulties. This paper presents a functional representation for graph matching (FRGM) that aims to provide more geometric insights on the problem and reduce the space and time complexities.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
October 2019
Image segmentation has come a long way since the early days of computer vision, and still remains a challenging task. Modern variations of the classical (purely bottom-up) approach, involve, e.g.
View Article and Find Full Text PDF