Publications by authors named "M Pejznochova"

The mitochondrial biogenesis and adequate energy production are important for fetal growth and early postnatal adaptation. The aim of the study was to characterize mitochondrial DNA (mtDNA) content and expression patterns of POLG, TFAM, NRF1,NRF2 and PGC1 family of regulated coactivators (PGC1A, PGC1B and PRC) involved in the mtDNA transcription, regulation and maintenance in human fetal tissues during second trimester of gestation. Further the mRNA expression profiles of selected cytochrome c oxidase (COX) subunits were analysed.

View Article and Find Full Text PDF

The mitochondrial DNA (mtDNA) amount in cells as the basis for mitochondrial energy generating system, which produces ATP, plays an important role in the fetal development and postnatal morbidity. Isolated human cord blood leukocytes (HCBL) contribute very little to the overall metabolic turnover, but they may serve as easily available marker cells for the study of the mtDNA amount changes in cord blood during fetal development. The aim of our study was to analyze the mtDNA amount in HCBL.

View Article and Find Full Text PDF

The Oxa1 protein is a founding member of the evolutionarily conserved Oxa1/Alb3/YidC protein family, which is involved in the biogenesis of membrane proteins in mitochondria, chloroplasts and bacteria. The predicted human homologue, Oxa1l, was originally identified by partial functional complementation of the respiratory growth defect of the yeast oxa1 mutant. Here we demonstrate that both the endogenous human Oxa1l, with an apparent molecular mass of 42 kDa, and the Oxa1l-FLAG chimeric protein localize exclusively to mitochondria in HEK293 cells.

View Article and Find Full Text PDF

Background And Aims: Most diseases in premature neonates are secondary to immaturity of various organ systems. Also the inadequate capacity of mitochondrial energy production may play an important role in the neonatal morbidity.

Subjects And Methods: The activities and amount of respiratory chain (RC) complexes, pyruvate dehydrogenase (PDH) and citrate synthase (CS) were analysed in isolated muscle mitochondria obtained at autopsy in 19 premature neonates using spectrophotometric and radioenzymatic methods and blue-native electrophoresis and Western blotting.

View Article and Find Full Text PDF