Particle size evolution in seeded semibatch emulsion polymerization is monitored by two real-time monitoring techniques: online turbidity spectroscopy (TUS) and inline photon density wave spectroscopy (PDWS). An automatic dilution system that withdraws a sample from the reactor and upon dilution transfers to the measurement cell is used for the online TUS analysis. A PDWS probe is immersed in the reactor and collects inline the scattered light directly from the reacting latex.
View Article and Find Full Text PDFThere are thousands of rare genetic diseases that could be treated with classical gene therapy strategies such as the addition of the defective gene via viral or non-viral delivery or by direct gene editing. However, several genetic defects are too complex for these approaches. These "genomic mutations" include aneuploidies, intra and inter chromosomal rearrangements, large deletions, or inversion and copy number variations.
View Article and Find Full Text PDFRecombination activating genes () are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function.
View Article and Find Full Text PDFHyper IgM1 is an X-linked combined immunodeficiency caused by CD40LG mutations, potentially treatable with CD4 T-cell gene editing with Cas9 and a "one-size-fits-most" corrective template. Contrary to established gene therapies, there is limited data on the genomic alterations following long-range gene editing, and no consensus on the relevant assays. We developed drop-off digital PCR assays for unbiased detection of large on-target deletions and found them at high frequency upon editing.
View Article and Find Full Text PDFParticle size and particle size distribution (PSD) are important properties of polymer latexes because they strongly affect the film formation and the rheological properties of the latexes. Thus, monitoring the particle size is of paramount importance during the production of waterborne polymeric dispersions, for which online/inline measurements of the particle size are required. Herein, turbidity spectroscopy (TUS) is used to measure the particle size of nanoparticles in dispersed media.
View Article and Find Full Text PDF