Publications by authors named "M Patrikakis"

Smooth muscle cells (SMC) in blood vessels are normally growth quiescent and transcriptionally inactive. Our objective was to understand promoter usage and dynamics in SMC acutely exposed to a prototypic growth factor or pro-inflammatory cytokine. Using cap analysis gene expression (FANTOM5 project) we report differences in promoter dynamics for immediate-early genes (IEG) and other genes when SMC are exposed to fibroblast growth factor-2 or interleukin-1β.

View Article and Find Full Text PDF
Article Synopsis
  • The FANTOM5 project mapped transcription initiation events in human and mouse genomes with high precision using CAGE technology and single-molecule sequencing.
  • Over 3,000 diverse samples, including primary cells and tissues, were analyzed through a standardized process starting from RNA quality assessment to generating transcription initiation frequencies.
  • The analysis identified around 200,000 (human) and 150,000 (mouse) non-overlapping peaks, enabling the annotation of both known and novel promoters and providing insights into transcriptional regulation in different cellular states.
View Article and Find Full Text PDF

Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses.

View Article and Find Full Text PDF

Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles.

View Article and Find Full Text PDF

Worldwide, one in three cancers is skin-related, with increasing incidence in many populations. Here, we demonstrate the capacity of a DNAzyme-targeting c-jun mRNA, Dz13, to inhibit growth of two common skin cancer types-basal cell and squamous cell carcinomas-in a therapeutic setting with established tumors. Dz13 inhibited tumor growth in both immunodeficient and immunocompetent syngeneic mice and reduced lung nodule formation in a model of metastasis.

View Article and Find Full Text PDF