Entropy (Basel)
September 2024
We assess a scheme for measurement-free quantum teleportation from the perspective of the resources underpinning its performance. In particular, we focus on claims recently made about the crucial role played by the degree of non-Markovianity of the dynamics of the information carrier whose state we aim to teleport. We prove that any link between the efficiency of teleportation and the back-flow of information depends fundamentally on the way the various operations entailed by the measurement-free teleportation protocol are implemented while-in general-no claim of causal link can be made.
View Article and Find Full Text PDFRecent developments have led to the possibility of embedding machine learning tools into experimental platforms to address key problems, including the characterization of the properties of quantum states. Leveraging on this, we implement a quantum extreme learning machine in a photonic platform to achieve resource-efficient and accurate characterization of the polarization state of a photon. The underlying reservoir dynamics through which such input state evolves is implemented using the coined quantum walk of high-dimensional photonic orbital angular momentum and performing projective measurements over a fixed basis.
View Article and Find Full Text PDFWe make use of the powerful formalism of quantum parameter estimation to assess the characteristic rates of a continuous spontaneous localization (CSL) model affecting the motion of a massive mechanical system. We show that a study performed in non-equilibrium conditions unveils the advantages provided by the use of genuinely quantum resources-such as quantum correlations-in estimating the CSL-induced diffusion rate. In stationary conditions, instead, the gap between quantum performance and a classical scheme disappears.
View Article and Find Full Text PDFMany phenomena and fundamental predictions, ranging from Hawking radiation to the early evolution of the Universe rely on the interplay between quantum mechanics and gravity or more generally, quantum mechanics in curved spacetimes. However, our understanding is hindered by the lack of experiments that actually allow us to probe quantum mechanics in curved spacetime in a repeatable and accessible way. Here we propose an experimental scheme for a photon that is prepared in a path superposition state across two rotating Sagnac interferometers that have different diameters and thus represent a superposition of two different spacetimes.
View Article and Find Full Text PDFThe framework of Quantum Darwinism strives at characterizing the quantum-to-classical transition by introducing the concept of redundancy of information-as measured by Mutual Information-that a set of observers would acquire on the state of a physical system of interest. Further development on this concept, in the form of Strong Quantum Darwinism and Spectrum Broadcast Structures, has recently led to a more fine-grained identification of the nature of such information, which should not involve any quantum correlations between observing and observed systems, while the assessment of information proliferation from individual systems has attracted most of the attention so far, the way such mechanism takes place in more complex states is open to exploration. To this end, we shall consider a two-qubit state, sharing initial quantum correlations in the form of Quantum Discord, and different dephasing-like interactions between them and an observing environment.
View Article and Find Full Text PDF